會說話的機(jī)器人紛紛上崗 但像人一樣聊天還需深入理解語境

人類的對話是極其復(fù)雜的,其中每個語句都建立在對應(yīng)的語境和上下文的基礎(chǔ)上。因此,對話智能體需要通過對語言和語境的深度理解來更加有效地學(xué)習(xí)。

“我想買手機(jī)有什么推薦嗎?”“三星的不錯,我之前一直用三星的。”“魅族是國產(chǎn)手機(jī)十大品牌之一,好不好,用了才知道哦。”“小米也不錯。”“小米比大米有營養(yǎng)。”這些看似時而認(rèn)真,時而無厘頭的對話和我們?nèi)粘N⑿湃毫目此撇o二致,但其實在這個群里聊天的都是機(jī)器人。

能讓機(jī)器人們聚在一起好好聊個天可是個技術(shù)活,不僅要把多智能體強(qiáng)化學(xué)習(xí)的方法應(yīng)用在自然對話場景中,還需要優(yōu)化社交機(jī)器人在不同上下文語境下的談話策略。在日前天津高新區(qū)舉行的第三屆社交機(jī)器人論壇暨首屆機(jī)器人群聊比賽研討會上,多個社交機(jī)器人在同步對話的比賽現(xiàn)場一較高下。

這群機(jī)器人聊天有點(diǎn)“尬”

據(jù)了解,本次比賽嘗試將多智能體人機(jī)對話的技術(shù)應(yīng)用在自然對話場景中。比賽選取特定主題的啟動句,打亂啟動順序,經(jīng)過單輪或者多輪,生成符合主題且流暢的對話,最終采用自動評價和人工評價相結(jié)合的方式,根據(jù)主題相關(guān)性、語言流暢性和語境相關(guān)性進(jìn)行打分。

“剛剛還是一群在認(rèn)真聊天的機(jī)器人,卻可能因某一個機(jī)器人的話鋒一轉(zhuǎn),整個話題就被帶入尬聊場景。就像那個推薦手機(jī)的話題,明明是在聊手機(jī),就因為一個機(jī)器人說了小米,整個話題就變成了美食和養(yǎng)生。”大賽組委會委員、哈爾濱工業(yè)大學(xué)副教授張偉男介紹說,通過這次比賽,我們看到機(jī)器人們的聊天能力有所增強(qiáng),但是與真人聊天相比還存在幾個問題:多樣性程度比較低,語言比較貧乏,回復(fù)重復(fù)率高;一致性能力弱,同一個群聊下,機(jī)器人經(jīng)常前后回復(fù)出現(xiàn)矛盾;主題漂移,就是我們常說的跑題,幾乎每個群聊到最后都跑題;質(zhì)量不穩(wěn)定,回復(fù)質(zhì)量差的機(jī)器人嚴(yán)重影響群聊質(zhì)量,機(jī)器人不能很好地篩選對話歷史進(jìn)行回復(fù)決策。

三種主流技術(shù)各有優(yōu)缺點(diǎn)

讓機(jī)器人群聊看似簡單,卻都需要人工智能的交互式實現(xiàn)技術(shù)——人機(jī)對話技術(shù)的發(fā)展作為支撐。獲得首屆機(jī)器人群聊大賽第一名的隊伍FunNLP的指導(dǎo)老師,天津大學(xué)副教授張鵬介紹說,在研究上,大數(shù)據(jù)和深度學(xué)習(xí)共同推動了自然語言理解技術(shù)的發(fā)展。目前實現(xiàn)人機(jī)對話有三種主流技術(shù),各有優(yōu)缺點(diǎn)。

基于規(guī)則的人機(jī)對話系統(tǒng),機(jī)器人需根據(jù)系統(tǒng)中預(yù)先定義的一些規(guī)則來進(jìn)行回復(fù),例如關(guān)鍵詞、if-else條件等。這種技術(shù)最大的缺點(diǎn)是需要人工撰寫規(guī)則,要定義的規(guī)則太多,需要付出極大的努力來做規(guī)則設(shè)計。

基于檢索的人機(jī)對話系統(tǒng),直接從預(yù)先定義的候選池中選擇最佳的答案,但缺點(diǎn)是無法應(yīng)對自然語言的多變性、多義性、語境結(jié)構(gòu)、連貫性等,且當(dāng)輸入消息的語義差別很小時,機(jī)器人便無法精確識別,以至于無法生成新的回復(fù)。

“目前基于生成模型的人機(jī)對話系統(tǒng)是研究的熱點(diǎn)。”張鵬表示,與檢索型對話機(jī)器人不同的是,它可以生成一種全新的回復(fù),因此相對更為靈活。但是這種系統(tǒng)有時候會出現(xiàn)語法錯誤,或者生成一些沒有意義的回復(fù)。

目前還難達(dá)人類對話水平

在我們?nèi)粘I钪校煌愋偷娜藱C(jī)對話可謂是隨處可見:閑聊式對話,如微軟小冰;任務(wù)驅(qū)動的多輪對話,如訂餐對話系統(tǒng)等;問答式的對話,如汽車語音系統(tǒng);推薦式對話,如一些客服機(jī)器人。其中閑聊、問答和任務(wù)型對話是用戶輸入內(nèi)容后系統(tǒng)才會給出相應(yīng)的回復(fù),而推薦式系統(tǒng)主動向用戶提供服務(wù)和信息。但由于各項技術(shù)尚未成熟,因此對話機(jī)器人還達(dá)不到類人的對話水平,表現(xiàn)不夠靈活,甚至?xí)a(chǎn)生一些笑料。

對于本次比賽的機(jī)器人在群聊回復(fù)方面出現(xiàn)的一些問題,張鵬解釋說,這主要是由三方面原因造成的。首先對話機(jī)器人在理解群聊對話記錄,回復(fù)的情感一致性及與其他機(jī)器人的交互三個方面存在一定的問題。所以群聊過程中出現(xiàn)了機(jī)器人自顧自回復(fù)或者是矛盾性回復(fù)等現(xiàn)象。

其次,訓(xùn)練機(jī)器人聊天是需要大量數(shù)據(jù)的,但某些特定領(lǐng)域的對話數(shù)據(jù)相當(dāng)有限,如本次比賽中的數(shù)碼產(chǎn)品和美食主題。并且,這些領(lǐng)域的中文閑聊型對話數(shù)據(jù)的收集和對話系統(tǒng)的構(gòu)建都是十分耗費(fèi)人力的。

第三,目前基于神經(jīng)網(wǎng)絡(luò)的對話系統(tǒng)主要依賴于大量結(jié)構(gòu)化的外部知識庫信息和對話數(shù)據(jù),系統(tǒng)通過訓(xùn)練來“模仿”和“學(xué)習(xí)”人類說話,這也導(dǎo)致了回復(fù)語句單一的問題。因此,對話智能體需要通過對語言和語境的深度理解來更加有效地學(xué)習(xí)。

像人一樣聊天還需深入理解語境

“雖然深度學(xué)習(xí)技術(shù)被充分運(yùn)用,技術(shù)水平有所提高,但是以目前的技術(shù)來說,要做到讓機(jī)器人像人一樣聊天還有一定的難度。”張鵬表示,人類的對話是極其復(fù)雜的,其中每個語句都建立在對應(yīng)的語境和上下文的基礎(chǔ)上,朋友們在聊天時甚至能在對方說話之前就預(yù)料到下一句會說什么。

若想要達(dá)到相當(dāng)于人類對話的水平,目前有幾種方法可以探討。其中一種是構(gòu)造龐大且高度復(fù)雜的AI模型,如現(xiàn)在基于Transformer結(jié)構(gòu)的Bert模型和GPT模型,其參數(shù)量已達(dá)到數(shù)億級。然而模型越大,從用戶輸入信息到對話系統(tǒng)反應(yīng)之間的延時就越長,而且實質(zhì)上,此類模型仍然需要依賴于大量的數(shù)據(jù),這與人類的思考和學(xué)習(xí)方式不符。

第二種是Meta Learning技術(shù),這種技術(shù)需要機(jī)器人具備學(xué)會學(xué)習(xí)的能力,能夠基于過往的經(jīng)驗快速地學(xué)習(xí)。這類模型是模擬人的思考與學(xué)習(xí)方式,從本質(zhì)上更接近人類間的相互對話。但問題是我們需要結(jié)合具體的任務(wù),提出基于Meta Learning的解決方案,這無疑需要更加深入的研究。

第三種是強(qiáng)化學(xué)習(xí)技術(shù),強(qiáng)化學(xué)習(xí)系統(tǒng)由智能體、狀態(tài)、獎賞、動作和環(huán)境5部分組成。現(xiàn)在的研究工作主要是將強(qiáng)化學(xué)習(xí)應(yīng)用于任務(wù)型對話系統(tǒng)的策略學(xué)習(xí)上,強(qiáng)化學(xué)習(xí)能解決基于規(guī)則策略存在的泛化能力差、人工成本高等問題,并且無需大量的訓(xùn)練語料,只需要一些目標(biāo),便能夠提高任務(wù)型對話的質(zhì)量,彌補(bǔ)了深度學(xué)習(xí)的一大缺點(diǎn),當(dāng)然強(qiáng)化學(xué)習(xí)也會帶來很多挑戰(zhàn),比如智能體會給當(dāng)前互動的環(huán)境帶來一定的影響等,這些都是需要我們?nèi)ゲ粩嗵剿骱蜕钊胙芯康摹?陳 曦)

關(guān)鍵詞: 會說話的機(jī)器人
圖片版權(quán)歸原作者所有,如有侵權(quán)請聯(lián)系我們,我們立刻刪除。
新化月報網(wǎng)報料熱線:886 2395@qq.com

相關(guān)文章

你可能會喜歡

最近更新

推薦閱讀